The computation of the external Q of a cavity with an attached waveguide is via three simple steps.
In the first step, we compute the resonant fields in a closed geometry, ie. the waveguide is closed with an electric or magnetic boundary condition.
gd1 < cavity-with-waveguide.gdf | tee out-eigen
After some minutes we get a list of frequencies like:
One solution seems to be static and is not saved. i freq(i) acc(i) cont(i) 1 27.6778e+6 0.9982920236 0.3328254536 # "grep" for me 2 2.8818e+9 0.0000000790 0.0000000695 # "grep" for me 3 3.6905e+9 0.0000000162 0.0000000313 # "grep" for me 4 4.5837e+9 0.0000000003 0.0000000005 # "grep" for me 5 6.1361e+9 0.0000000103 0.0000000206 # "grep" for me 6 6.4118e+9 0.0000000013 0.0000000151 # "grep" for me 7 6.6111e+9 0.0000000084 0.0000000998 # "grep" for me 8 6.8857e+9 0.0000000062 0.0000000463 # "grep" for me 9 7.3426e+9 0.0000000095 0.0000000774 # "grep" for me 10 7.5733e+9 0.0000005696 0.0000093463 # "grep" for me 11 7.6269e+9 0.0000000112 0.0000001527 # "grep" for me 12 7.9060e+9 0.0000000082 0.0000000684 # "grep" for me 13 8.3725e+9 0.0013724901 0.0123083161 # "grep" for me 14 8.4666e+9 0.0060409112 0.2701361389 # "grep" for meThe inputfile for this cavity is cavity-with-waveguide.gdf
gd1 < let-it-ring.gdf | tee out-fdtdThe inputfile for this time-domain computation is let-it-ring.gdf
We start the postprocessor, gd1.pp, and use him interactively:
Input for gd1.pp:
-general, infile= @last -sparameter freqdata= no timedata= yes tsumpower= yes doitWe get a lot of plots. One of these plots shows us the power sum of all selected modes as a function of time. ..But only one mode is selected.. After about 20 periods, the transients have decayed sufficiently, leaving only a function, which is the power as a function of time.
In order to know the external Q, we have to know what the stored energy is. Since the power flowing is almost constant, the stored energy will also be almost constant...
We compute the stored energy in the electric and magnetic field with the section "-energy" of gd1.pp:
-energy solution= 8 quantity= e, doit quantity= h, doit menuWe get the menu with 'menu'
############################################################################## # Flags: nomenu, prompt, message, # ############################################################################## # section: -energy # ############################################################################## # symbol = h_8 # # quantity = h # # solution = 8 # # # # # # @henergy : 4.88692e-12 (symbol: h_8, m: 1) # # @eenergy : 253.6925e-15 (symbol: e_8, m: 1) # ############################################################################## # doit, ?, return, end, help # ##############################################################################We see that at the time when the 8.th field was stored ( t=6.6901e-9 s ), the total stored energy in the computational volume was
(1) |
The external Q for the chosen aperture width therefore is
(2) |
------- Thats it.Although not necessary, we want to have a look at the electric field after about 20 periods: